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Abstract: Background: Oral leukoplakia (OL) is a potential neoplasmic lesion. The aim of this
study was to apply texture analysis (TA) and fractal dimension analysis (FDA) to estimate the
effectiveness of OL treatment using an Er:YAG laser. Methods: Eighteen patients with 32 lesions were
treated. Laser procedures were conducted using the LiteTouch™ Er:YAG Dental Laser. The diameter
of the operational tip was 1.3 mm, the power was 50 mJ, the frequency was 50 Hz, and the
wavelength was 2940 nm. TA was based on long and short-run emphasis inverse moments,
difference entropy, inverse difference moment, and wavelet decomposition for two-dimensional
photography. FDA was measured using the box-counting method. Results: Total response was
achieved in 50% of lesions, partial response was observed in 47%, and 3% of lesions did not respond
to treatment. Recurrence occurred in 34% of lesions. TA features indicated pathological images
depicting leukoplakia and complete reconstruction of the correct mucosal image after laser ablation.
The discrete wavelet transformation feature detects much larger structures than the properties derived
from the run-length matrix and co-occurrence matrix. Conclusions: The Er:YAG laser is an effective
treatment method in cases of oral leukoplakia. Leukoplakia treatment by Er:YAG laser is an effective
modality, as revealed by the oral mucosa microstructure. TA and FDA are promising methods to
estimate the effectiveness of OL treatment.

Keywords: leukoplakia; texture analysis; fractal dimension analysis; oral pathology; laser surgery;
Er:YAG laser

1. Introduction

Oral leukoplakia (OL) is a potential neoplasmic lesion [1]. OL is a white patch or plaque
that cannot be clinically identified as any other disease. The classical definition of leukoplakia is
presented by the World Health Organisation. Malignant transformation risk is between 0.2 and 9% [2].
The rate of malignant transformation depends on the follow-up time and demographic factors [3].
Leukoplakia may be divided into homogenous and nonhomogeneous types. Nonhomogeneous OL
presents a higher risk for malignant transformation [4]. Warnakulasuriya and Ariyawardana revealed
a total transformation rate of 14.5% for nonhomogeneous leukoplakia [5]. Cigarette smoking,
alcohol, spicy food, galvanic current, and mechanical irritation are the factors most commonly affecting
leukoplakia. Classical surgery is still helpful in the case of small lesions. Widespread lesions that
involve the whole mucous membrane of the cheeks, tongue, bottom of the oral cavity, or alveolar ridge
are important clinical problems. In such cases, classical surgery fails. Classical excision of mucosa
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on a large surface area, without reconstructive treatments, will lead to scar formation, impairing the
function of the stomatognathic system. Cryosurgery, photodynamic therapy, systemic administration
of vitamin D, and laser surgery are known as less invasive treatment methods of OL.

In our study, we used an Er:YAG laser. The Er:YAG laser emits light with a 2940 nm wavelength,
which corresponds to the main peak of water absorption [6]. Most of the energy is absorbed in the
epidermis and papillary dermis. This laser results in more superficial ablation with less thermal
damage [7].

Clinical estimate of treatment effectiveness is a problem due to the irregular shape of lesions.
In the case of the tongue and cheeks, the shape of lesions depends on the mucous membrane
tension. In small lesions, when regression is completed, diagnosis is simple: clinical examination and,
alternatively, excision for controlled microscopic examination. Large, multifocal lesions are very often
only partially cured. It is difficult to estimate whether a cured region looks like a normal mucous
membrane only by performing macroscopic examination without microscopic examination as well.
In our study, we tried to use texture analysis and fractal dimension analysis to achieve more objective
methods for examination during and after treatment.

Digital images consist of pixels. Pixels create the delicate structure of an image, which is named
texture. Texture is a collection of recurrent graphical patterns characterized by brightness, entropy,
smoothness, uniformity, roughness, granulation, randomness, or linearity [8]. Mathematical and
statistical analysis of texture patterns is known as texture analysis (TA). TA is based upon the
mathematical analysis of the matrix that represents the distribution of pixel brightness in the image
area. Texture analysis may be divided into four methods: statistical, structural, model-based,
and transform [9,10]. TA is commonly used in medicine to analyse X-ray photos, computed tomography,
or magnetic resonance images [11–14]

Irregular shape is a characteristic feature of leukoplakia. The measurement of a leukoplasm’s
area and shape is very difficult, especially comparing measurements before and after treatment.
Fractal dimension analysis (FDA) is a useful method in cases with such complicated patterns. FDA is
used when classical Euclidian mathematics fails.

Simple mathematic formulas describe the fractal, but these formulas are iterated up to infinity.
Thanks to these iterations, fractals can be magnified up to infinity. On each level of magnification,
we are able to see new details of fractals, but these features are similar to the origin shape. This feature
is named a self-similarity.

Using classic Euclidean geometry on a daily basis, we are used to a line having only one dimension,
which is its length; an item on a plane has two dimensions: length and width; while a three-dimensional
item has height, width and length. However, fractals are shapes beyond the principles of classic
geometry. Another surprising feature of fractals is their self-similarity. It is a feature manifested in the
fact that a fractal can be magnified unlimitedly, and subsequent details of its structure are similar to its
initial shape.

Figure 1 shows examples of fractals and their fractal dimensions (FD). The fractal dimension value
of Cantor’s set is approximately 0.631, so it is something between a point (FD = 0) and a straight line
(FD = 1). Koch’s snowflake (FD ≈ 1.262) is a shape closer to the line than a two-dimensional object,
but Sierpinski’s triangle (FD ≈ 1.585) is almost in the centre between a line and a plane figure (FD = 2).

Many anatomical structures, such as blood vessels, neural networks, and bone structure,
are examples of fractals.

The aim of this study was to apply texture and fractal dimension analysis to estimation the
effectiveness of oral leukoplakia treatment using an Er:YAG laser.
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median age was 61 years (SD = 11). The youngest patient was 36, and the eldest patient was 83 
years old. The median age was 65 years for women and 54 years for men. The overall number of 
lesions was 32. Exclusion criteria were dysplasia occurrence in histopathological examination and 
patients who smoke cigarettes. 

After local anaesthesia, a specimen of the lesion was taken out for histopathological 
examination. The excision site was chosen on the border between healthy mucosa and the lesion. In 
the case of widespread lesions, two or three samples were collected from the most representative 
sites. Histopathological slides were stained with haematoxylin and eosin. The most common 
occurrence of leukoplakia was mucous of the cheek (11 lesions), tongue (6 lesions), and mucous 
membrane of the alveolar ridge (8 lesions). The least common occurrence of leukoplakia foci was in 
the palate region (only 2 lesions). 

Lesions were categorized according to the van der Waal classification. Three parameters are 
the basis of that classification: L: lesion size (1: smaller than or equals 2 cm; 2: between 2 and 4 cm; 
3: lesion larger than 4 cm); C: clinical view (1: homogenous; 2: nonhomogeneous); P: histopathologic 
(1: without dysplasia; 2: dysplasia present). 

A decrease in at least one physical dimension of a lesion of up to 50% was a criterion of partial 
remission. All treatment procedures were conducted every two weeks. Control examinations were 
performed two weeks after the last laser procedure and at 1 month, 3 months, 6 months, and 1 year. 
Patients were informed to monitor the mucous membrane and call for a control visit if a suspicious 
lesion appeared. 

Texture and fractal dimension analysis were performed in the following groups: reference 
(healthy oral mucosa), pre-operational (lesion), intermediate (lesion two weeks after treatment), and 
post-operational (region totally cured in clinical examination). 

The study was done after obtaining an approval of the Ethics Committee of the Medical 
University in Wroclaw (approval number: KB -367/2014). 

2.2. Laser Procedure 

All procedures were performed with local infiltration anaesthesia using 1.8 mL of Septanest 
200 (4% articaine with 1:200000 adrenaline, Septodont, Poland). Laser procedures were conducted 
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2. Materials and Methods

2.1. Patients and Lesions

Eighteen patients were enrolled into the study (12 women (67%) and 6 men (33%)). The median
age was 61 years (SD = 11). The youngest patient was 36, and the eldest patient was 83 years old.
The median age was 65 years for women and 54 years for men. The overall number of lesions was
32. Exclusion criteria were dysplasia occurrence in histopathological examination and patients who
smoke cigarettes.

After local anaesthesia, a specimen of the lesion was taken out for histopathological examination.
The excision site was chosen on the border between healthy mucosa and the lesion. In the case
of widespread lesions, two or three samples were collected from the most representative sites.
Histopathological slides were stained with haematoxylin and eosin. The most common occurrence of
leukoplakia was mucous of the cheek (11 lesions), tongue (6 lesions), and mucous membrane of the
alveolar ridge (8 lesions). The least common occurrence of leukoplakia foci was in the palate region
(only 2 lesions).

Lesions were categorized according to the van der Waal classification. Three parameters are
the basis of that classification: L: lesion size (1: smaller than or equals 2 cm; 2: between 2 and 4 cm;
3: lesion larger than 4 cm); C: clinical view (1: homogenous; 2: nonhomogeneous); P: histopathologic
(1: without dysplasia; 2: dysplasia present).

A decrease in at least one physical dimension of a lesion of up to 50% was a criterion of partial
remission. All treatment procedures were conducted every two weeks. Control examinations were
performed two weeks after the last laser procedure and at 1 month, 3 months, 6 months, and 1 year.
Patients were informed to monitor the mucous membrane and call for a control visit if a suspicious
lesion appeared.

Texture and fractal dimension analysis were performed in the following groups: reference
(healthy oral mucosa), pre-operational (lesion), intermediate (lesion two weeks after treatment),
and post-operational (region totally cured in clinical examination).

The study was done after obtaining an approval of the Ethics Committee of the Medical University
in Wroclaw (approval number: KB -367/2014).

2.2. Laser Procedure

All procedures were performed with local infiltration anaesthesia using 1.8 mL of Septanest 200
(4% articaine with 1:200000 adrenaline, Septodont, Poland). Laser procedures were conducted using
a LiteTouch™ Er:YAG Dental Laser (Light Instruments Ltd, Yokneam, Israel). The diameter of the
operational tip was 1.3 mm, the power was 50 mJ, the frequency was 50 Hz, and the wavelength was
2940 nm; water cooling was applied. The total dose of radiation depended on the size of the lesion.
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All laser procedures were limited to the epithelial layer of the oral mucosa to decrease the risk of
scar formation.

2.3. Image Acquisition

All photos were taken using a Samsung S9 (Samsung, Seoul, South Korea) cell phone camera.
A cell phone camera was used, because in a future study, we will try to create a system of remote
diagnosis of oral mucosa lesions on the basis of cell phone photography to simplify the whole process
on the dentist’s side. All photos were taken perpendicular to the mucous membrane. To achieve the
same scale of photos, a focus point was locked at the same distance. Images were stored at a maximum
resolution (12 megapixels).

2.4. Image Preparation

All graphical operations were performed in GNU Image Manipulation Program (GIMP) version
2.10.18 (open source licence, www.gimp.org). In the centre of the lesion, a square region of
interest (ROI, 150 × 150 pixels) was selected. The ROI was cut off from the original photo. We used
the auto-levels tool to equalize the histogram of the image. Then, greyscale conversion was
applied (prepared and saved images were put through texture analysis). After that, images were
converted to bitmap format (threshold level 137 of 255). The threshold was set experimentally.
Finally, images were stored in TIFF (tagged image file format) format (without compression).
All graphical operations are shown in Figure 2. Such prepared images were the basis for counting the
fractal dimension. All image processing was necessary to obtain source material for further analysis.
The auto-levels tool enables stretching of a histogram, which increases contrast between the lesion
and background. Greyscale conversion is needed to create bitmap files. The classical counting box
method (fractal dimension analysis) requires bitmap format (one bit notation–1–signal, 0–background).
The threshold of this conversion (134) was experimentally chosen to achieve sharp borders of lesions,
and a threshold level of 128 (default binary conversion) blurred these borders. Texture analysis requires
greyscale conversion.
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2.5. Texture Analysis

Due to the determination of the usefulness of the run-length matrix as well as the co-occurrence
matrix in digital imaging diagnosis of oral mucosal white lesions, a similar approach was used in this
study to evaluate the results of laser treatment of oral leukoplakia [15]. Let p(i,j) be the number of times
there is a run of length j having grey level i. Let Ng be the number of grey levels and Nr be the number
of runs [16]. Definitions of the parameters of the run-length matrix p(i,j) are given below.

Long-run emphasis inverse moments:

LngREmph = (

Ng∑
i=1

Nr∑
j=1

j2p(i, j))/C (1)

www.gimp.org
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Short-run emphasis inverse moments:

ShrtREmph = (

Ng∑
i=1

Nr∑
j=1

p(i, j)
j2

)/C (2)

where the coefficient C is defined as

C =

Ng∑
i=1

Nr∑
j=1

p(i, j) (3)

The second-order histogram is defined as the co-occurrence matrix hdθ (i,j) [17]. When divided by
the total number of neighbouring pixels R (d,θ) in the ROI, this matrix becomes the estimate of the
joint probability, pdθ (i,j), of two pixels a distance d apart along a given direction θ, having particular
(co-occurring) values i and j. Formally, given the image f (x,y) with a set of Ng discrete intensity levels,
the matrix hdθ (i,j) is defined such that its (i,j)th entry is equal to the number of times that

f (x1, y1) = i and f (x2, y2) = j (4)

where (x2, y2) = (x1, y1) + (d cosθ, d sinθ).
This yields a square matrix of dimension equal to the number of intensity levels in the image,

for each distance d = 5 pixels and orientation with angles θ= 0◦, 45◦, 90◦, and 135◦ (these are considered,
and next their average is calculated). Reduction in the number of intensity levels (by quantization to
fewer levels of intensity) helps remove noise, with some loss of textural information (as low as 4-bit
here). The co-occurrence matrix-derived parameters are defined by the equations that follow, where px

(i) and py (j) are the marginal distributions.

2.6. Difference Entropy

Di f Entrp = −

Ng∑
i=1

px−y(i) log
(
px−y(i)

)
(5)

Inverse difference moment:

InvD f Mom =

Ng∑
i=1

Ng∑
j=1

1

1 + (i− j)2 p(i, j) (6)

Calculations were performed in Mazda 4.6 (Technical University of Lodz, Lodz, Poland) on
selected features [15,18–22].

However, the above texture characteristics based on the run-length matrix and co-occurrence
matrix detect quite small parts of the mucous membrane image. To evaluate objects visualized more
globally, discrete wavelet transform is used [23–25]. To compute the wavelet features in the first
step, the Harr wavelet is calculated for the whole image. The discrete wavelet transform (DWT)
is a linear transformation that operates on a data vector whose length is an integer power of two,
transforming it into a numerically different vector of the same length. It is a tool that separates data
into different frequency components and then studies each component with resolution matched to
its scale (scale 5 indicates bigger texture elements than scale 3). The discrete wavelet transform is
computed with a cascade of filters followed by a factor 2 subsampling (Figure 3).
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H and L denote high and low-pass filters, respectively (H detects lower objects; L detects
higher objects). Boxes after each filter denote subsampling. Outputs of these filters are given by the
following equations:

a j+1[p] =
∑+∞

n=−∞
l[n− 2p]d j[n] (7)

d j=1[p] =
∑+∞

n=−∞
h[n− 2p]a j[n] (8)

Elements aj are used for the next step (scale) of the transform, and elements dj, called wavelet
coefficients, determine the output of the transform. l [n] and h [n] are coefficients of low and high-pass
filters, respectively. One can assume that on scale j + 1, there is only half of the number of a and d
elements at scale j. This means that DWT can be done until only two aj elements remain in the analysed
signal. These elements are called scaling function coefficients.

The discrete wavelet transform algorithm for pictures is similar. The discrete wavelet transform is
performed first for all image rows and then for all columns. As a result of this transform there are
4 subband images at each scale (Figure 4).
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The increase in energy calculated for the wavelet coefficient LH (higher objects) and HL
(high objects but lower than detected in LH) indicates the detection of big longitudinal or oval
image elements (Figure 5). Scale 5 indicates relatively big texture elements observed in the image
too [26]. The most effective detection of such two-dimensional objects has been achieved in this study
for wavelet energy calculated after a high-pass filter (H) and next through a low-pass filter (L) in scale
5 (s5), according to the equation below:

WavEnHL_s-5 =

∑
x,y∈ROI

(
dHL

x,y

)2

n
(9)

where n is the number of pixels in the ROI, both at the given scale and subband; x,y are the coordinates
of a pixel; d is the wavelet coefficient.
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Figure 5. Image processing. Raw photographic files were pre-processed into 8-bit grey level images.
Next, five series of texture feature maps are presented.

Obviously, ROIs are reduced in size in successive scales in order to correspond to subband image
dimensions. In a given scale, the energy is calculated only if the ROI at this scale contains at least
4 pixels. The output of this procedure is a vector of features containing energies of wavelet coefficients
calculated in subbands at successive scales.

2.7. Fractal Dimension Analysis

Fractal dimension (DS) is counted using the formula below [27]:

DS = lim
ε→0

log N(ε)

log
(

1
ε

) (10)

where DS—fractal dimension; ε—length of box that creates a mesh covering surface with the examining
pattern; N(ε)—minimal number of boxes required to cover the examining pattern.

Graphical interpretation of the formula above involves data being applied on a chart, where the
x-axis is a decimal logarithm of the reverse length of the grid side covering the image at each stage,
while the y-axis is a decimal logarithm of the minimum number of grids needed to cover the studied
shape at the same stage. A straight line goes through points set in such a way. The straight line is
described by the formula: y = ax + b, and interpretation of the fractal dimension is calculating the value
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of the directional factor and of the straight line (Figure 6) [28]. All calculations of the fractal dimension
were carried out using the Fractalyse 2.4 program (University of Franche-Comté, Besançon, France,
www.fractalyse.org). Fractalyse software measures fractal dimension using the box-counting method.
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(a)—grids needed to cover the studied shape at the sequential stages, (b)—values of log(1/ε) and log(N(ε))
in function of N and ε, where: ε—length of box that creates a mesh covering surface with the examining
pattern; N(ε)—minimal number of boxes required to cover the examining pattern, (c)—interpretation
of the fractal dimension as calculating the value of the directional factor of straight line.

2.8. Statistical Analysis

Normality was checked by Shapiro–Wilk test application. One-way analysis of variance was
used for the detection of differences in the lesion, margin, and healthy tissue. The Kruskal–Wallis test
was applied due to the presence of non-normal data distributions. Factor analysis was applied
to obtain a small number of factors that account for most of the variability in the 4 variables
(FDA, WavEnHL_s-4, DifEntr/LngREmph, ShrtREmp), which were later used for leukoplakia
recurrence evaluation. A difference was considered significant if p < 0.05. Stargraphics Centurion 18
ver.18.1.12 (StarPoint Technologies, Inc., The Plains, VA, USA) and Statistica ver.13.3 (StatSoft, Krakow,
Poland) were used for statistical analyses.

3. Results

Eighteen patients with 32 lesions were treated (1.78 lesion per patient). In total, 123 laser procedures
were conducted (3.8 procedures per patient and 6.8 procedures per lesion). A total response was
achieved in 16 patients (50%), a partial response was observed in 15 patients (47%) and one patient (3%)
did not respond to treatment (despite six treatment procedure applications). In this case, the lesion
was incised using the classical surgical method and sent for microscopic examination. Recurrence was
noted in the case of 11 lesions (34%). In the case of recurrence, a new specimen was taken out for
microscopic examination.

www.fractalyse.org
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3.1. Texture Analysis

The development of leukoplakia causes characteristic changes in images of the oral cavity mucosa
(Figure 5, Table 1). The incidence of long bright chains of pixels increases (p < 0.001). Laser ablation
removes these structures in significant amounts, but there are still more of them than in healthy oral
mucosa (p < 0.001). Only after a period of complete healing is the image of the mucous membrane at
the site of the removed leukoplakia identical with LngREmp (Figure 7). ShrtREmp is the ideological
opposite of LngREmph (Figure 7), but the transformations described by this feature are the same.
They also prove the statistically significant efficacy of the Er:YAG laser in the treatment of leukoplakia
(p < 0.001).

Table 1. Digital texture analysis of oral mucosa photographic images after leukoplakia treatment by
Er:YAG laser (average ± standard deviations). Abbreviations: ROI—region of interest, i.e., sample of
image, KW—Kruskal–Wallis.

Texture
Feature

ROI
KW TestReference Pre-Operational Intermediate Post-Operational

Mucosa Period

LngREmph 4.038 ± 1.171 12.0427 ± 8.503 8.431 ± 7.861 5.071 ± 2.966 p < 0.001

ShrtREmp 0.715 ± 0.051 0.596 ± 0.067 0.633 ± 0.079 0.689 ± 0.062 p < 0.001

DifEntrp 0.665 ± 0.075 0.610 ± 0.062 0.615 ± 0.087 0.651 ± 0.089 p < 0.05

InvDfMom 0.489 ± 0.056 0.563 ± 0.066 0.550 ± 0.080 0.507 ± 0.076 p < 0.001

WavEnHL_s-5 0.372 ± 0.241 0.688 ± 0.285 1.077 ± 0.601 1.158 ± 0.711 p < 0.001
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Figure 7. The analysed image texture features derived from the run-length matrix ((a) LngREmph,
(b) ShrtREmp) and co-occurrence matrix ((c) DifEntrp, (d) InvDfMom). The values of all features
presented here are returned after treatment to the value characteristic for the reference mucosal image.
+ average, blue vertical line indicates median, * significant difference (p < 0.05).

DifEntrp is a less susceptible (p < 0.05) feature when analysing photographic images of oral
mucosa than features derived from the run-length matrix. However, DifEntrp indicates a decrease in
the variation in pathology of the fine pattern found in healthy mucosa. This fine texture network is
reproduced after the healing period (post-op, Figure 7). The last feature examined from the group
originating from the co-occurrence matrix is InvDfMom, which again strongly describes pathological
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changes and mucosal healing (p < 0.001). The number of small, white fields increases in leukoplakia,
and after full healing, the number of reticular (contrary to plate) patterns increases, which manifests
itself as a decrease in InvDfMom values to the size characteristic of healthy mucosa.

All of the features described above indicate a pathological image presented by leukoplakia and
complete reconstruction of the correct mucosal image after laser ablation. This applies to the microscale,
but if one considers the macroscale, new information is provided by the assessment of the discrete
wavelet transformation feature (Figure 8). There is a progressive increase in the energy of the HL
subband in the direction of the reference images by leukoplakia (pre-operational), from the intermediate
period up to post-operational (p < 0.001). This is related to the creation of extensive oval structures
filling up most of the image samples. This feature detects much larger structures than features derived
from the run-length matrix and co-occurrence matrix (Table 1).Materials 2020, 13, x FOR PEER REVIEW 10 of 18 
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Figure 8. Recognition of large structures in the field of vision (discrete wavelet transform) revealed
in the image of the buccal mucosa after surgery, representing a difference from the reference image.
These differences consist of the presence of oval fields with a different structure than normal mucous
membrane. + average, blue vertical line indicates median, * significant difference (p < 0.05).

3.2. Fractal Dimension Analysis

The lowest value of FDA was observed in the pre-operational group (1.810 ± 0.156), and the
highest value was seen in the reference group (1.924 ± 0.119). FDA at a level of 1.923 ± 0.059 was noted
in the intermediate period group, and FDA value 1.915 ± 0.082 was observed in the post-operational
group. It is important that significant differences were seen in the case of the pre-operational group
versus the reference group (p < 0.05), but no significant differences were seen between the reference,
intermediate period, and post-operational groups. The statistical chart is shown in Figure 9, and the
results of Kruskal–Wallis one-way analysis of variance are shown in Table 2.
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Table 2. Results of Kruskal–Wallis one-way analysis of variance for fractal dimension analysis (p-values).

ROI

Versus Reference Pre-op Intermediate Post-op

reference - 0.0001 0.3846 0.4659

pre-op 0.0001 - 0.1758 0.0778

intermediate 0.3846 0.1758 - 1.0000

post-op 0.4659 0.0778 1.0000 -

3.3. Estimation of Recurrence

The purpose of the factor analysis was to obtain a small number of factors that accounted for
most of the variability in the four selected variables. In this case, two factors were extracted, since both
factors had eigenvalues greater than or equal to 1.0. Together, they accounted for 82% of the variability
in the original data (Table 3).

Table 3. Factor analysis.

Factor Eigenvalue Percent of Variance Cumulative Percentage

Factor 1 2.27223 56.806 56.806
Factor 2 1.00342 25.085 81.891
Factor 3 0.684531 17.113 99.004
Factor 4 0.0398214 0.996 100.000

Next, matrix rotation was performed for the easy and obvious naming of the calculated factor
(Table 4).
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Table 4. Factor loading matrix after varimax rotation.

Feature
Factor 1 Factor 2 Estimated Specific

FDT Factor FDA–WDT Factor Communality Variance

FDA 0.114858 0.813578 0.675101 0.324899
WavEnHL_s-4 0.167196 0.784505 0.643402 0.356598

DifEntr/LngREmph 0.971237 0.190267 0.979502 0.0204976
ShrtREmp 0.976915 0.152573 0.977642 0.0223583

Abbreviation: FDA: fractal dimension analysis; DifEntr/LngREmph: Difference Entropy, Long-run emphasis inverse
moments; ShrtREmp: short-run emphasis inverse moments; FDT: fine diffused texture; FDA–WDT: fractal dimension
analysis–wavelet discrete transform.

This table shows the equations that estimate the common factors after rotation has been performed.
The rotation was performed in order to simplify the explanation of the factors. The rotated factors
have the following equations:

FDT factor = 0.114858*FDA + 0.167196*WavEnHL_s-4 +

0.971237*DifEntr/LngREmph + 0.976915*ShrtREmp
(11)

FDA-WDT factor = 0.813578*FDA + 0.784505*WavEnHL_s-4 +

0.190267*DifEntr/LngREmph + 0.152573*ShrtREmp
(12)

where the values of the variables in the equation are standardized by subtracting their means and
dividing by their standard deviations. It also shows the estimated communalities, which can be
interpreted as estimating the proportion of the variability in each variable attributable to the extracted
factors. Both factors are oriented towards describing the state of the normal mucous membrane,
because they were calculated from data for the reference oral mucosa. This means that such relationships
are present in a healthy place, and the treatment should aim at achieving this mucosal condition
(Figures 10 and 11).
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Figure 10. Factor 1 (fine diffused texture factor, FDT factor) calculated for the tested patients. It is
noticeable that its value is approaching the mucosal reference value with the progress of leukoplakia
treatment (ANOVA, F = 9.38, p < 0.001).
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Figure 11. Factor 2 (fractal dimension analysis–wavelet discrete transform factor, FDA–WDT factor)
calculated for the tested patients (Kruskal–Wallis test = 4.149, p = 0.246).

If an accumulation of locations with a similar tendency to recurrence is made, it is noted that
recurrence of OL is more common after cheek and tongue treatment (42%). However, recurrences are
less frequent (4.2%) when the primary lesion is treated within the gum or oral floor (Chi2 test 4.934,
p < 0.05). The number of performed laser sessions did not affect the frequency of recurrence (ANOVA,
F = 0.73, p = 0.401).

Appearance characteristics of the OL focus (second order features: FD and TA or third order
features: FDT and FDA–WDT factors) have some prognostic significance (Table 5): pre-op FDA
(recovery 1.73 ± 0.19 vs. recurrence 1.89 ± 0.07, p < 0.05), pre-op DifEntr/LngREmph (recovery
0.10 ± 0.06 vs. recurrence 0.06 ± 0.04, p = 0.054), pre-op FDT factor (recovery 1.00 ± 0.14 vs. recurrence
0.94 ± 0.08, p = 0.434), and FDA–WDT factor (recovery 2.03 ± 0.32 vs. recurrence 2.14 ± 0.21, p = 0.344).
Monitoring of the progress of treatment (intermediate test period) of the above features has no prognostic
value: intermediate FDA (recovery 1.92 ± 0.06 vs. recurrence 1.92 ± 0.07, p = 0.946), intermediate
DifEntr/LngREmph (recovery 0.11 ± 0.06 vs. recurrence 0.11 ± 0.09, p = 0.664), intermediate FDT
factor (recovery 1.05 ± 0.12 vs. recurrence 1.03 ± 0.19, p = 0.543), and intermediate FDA–WDT factor
(recovery 2.16 ± 0.20 vs. recurrence 2.11 ± 0.20, p = 0.612). The sites after the treatment do not allow
information about future potential relapse to be obtained: post-op/op FDA (recovery 1.92 ± 0.07 vs.
recurrence 1.93 ± 0.09, p = 0.131), post-op DifEntr/LngREmph (recovery 0.15 ± 0.08 vs. recurrence
0.16 ± 0.05, p = 0.674), post-op FDT factor (recovery 1.10 ± 0.16 vs. recurrence 1.13 ± 0.08, p = 0.503),
and post-op FDA–WDT factor (recovery 1.98 ± 0.16 vs. recurrence 2.05 ± 0.14, p = 0.289).

Table 5. Selected calculation used for evaluation recurrence rate.

Estimator Pre-Operational Intermediate Period Post-Operational KW Test

DifEntr/LngREmph 0.08 ± 0.06 0.11 ± 0.07 0.16 ± 0.06 p < 0.001
FDT Factor 0.98 ± 0.11 1.04 ± 0.15 1.11 ± 0.13 p < 0.001

FDA–WDT Factor 2.08 ± 0.27 2.14 ± 0.20 2.01 ± 0.15 n.s.

Abbreviations: DifEntr/LngREmph: ratio of difference entropy to long-run emphasis inverse moments; FDT factor:
fine diffused texture factor; FDA–WDT factor: fractal dimension analysis–wavelet discrete transform factor;
KW: Kruskal–Wallis.
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4. Discussion

Leukoplakia, especially the nonhomogeneous type, is a clinical problem as it is a potentially
premalignant lesion. Risk of malignant transformation requires the application of effective treatment
methods. Laser surgery is one such treatment. Matulić et al. used two lasers, Er:YAG and Er,Cr:YSGG,
for leukoplakia treatment. Both Er:YAG and Er,Cr:YSGG lasers are efficient in the removal of oral
leukoplakia without significant intraoperative or post-operative adverse effects [29]. Romeo et al.
show that a previous smoking habit has an influence on treatment success. Patients with no history
of smoking habits showed complete healing of 87.5%, while in ex-smokers, complete healing was
42.8%. The recurrence rate in the group without extension of margins was 45.5%. Achieving 3 mm
margins during ablation reduces the recurrence rate to 36.4%, so the recurrence rate was similar to our
study (34%) [30]. A similar recurrence level was reported by Galletta et al., in the case of CO2 laser
applied in leukoplakia treatment. The recurrence rate was 37.5% [31]. Del Corso et al. had the longest
period of follow up (60 months). They compared Nd:YAG laser evaporation and CO2 laser excision.
Del Corso et al. reported 28.5% recurrence, and no significant difference was found between the two
treatment groups. However, CO2 laser excision had better results than the Nd:YAG laser evaporation,
considering nonhomogeneous OL and OL with mild dysplasia [32]. Another long-term follow-up
study (5 years) was performed by Arduino et al. They compared the Er:YAG laser and traditional
scalpel surgery. Healing was at the level of 52.99% without significant differences between laser and
classical surgery [33].

In a previous study, we used photodynamic therapy (PDT) as a treatment method for leukoplakia,
and a complete response was lower than in our present study. After PDT application, a total response
was achieved in 29% of lesions, and 59% was a rating of partial response. Lack of treatment effect
was seen in 12% [34]. Han et al. also used photodynamic therapy, and they reported 55.2% saw
a complete response and 31.0% a partial response [35]. Yao et al. used the combination of PDT
and CO2 laser. They demonstrated that this is a promising treatment method, especially for a large
lesions [36]. Kothe et al. examined images of normal larynx and larynx leukoplakia. They used
automatic classification for colour texture analysis, which resulted in 71% for leukoplakia and 97%
for normal tissue [37]. Raja et al. used a texture analysis in the case of oral cancers involving the
buccal mucosa and assessed its effectiveness in differentiating between various grades of tumours.
They revealed that TA on computed tomography images is a promising method in the characterization
of oral cancers involving the buccal mucosa [38]. Digital analysis by means of discrete wavelet
transformation shows, in places operated by the laser, permanent changes in the appearance of the
oral mucosa. These changes concern the macrostructure (large oval fields) as opposed to a fully healed
laser-treated microstructure. This is demonstrated by the analysed image texture features derived from
the run-length matrix and co-occurrence matrix. This discrepancy in observation may be related to the
fact that still there were no leukoplakia-inducing factors removed in the series of patients presented
here or knowledge of the metabolic background of pathologies. These factors cannot be removed by
local/topical treatment.

Our previous study revealed that fractal dimension of OL foci of the tongue examined during
a photodynamic diagnosis procedure was higher than FD during standard white light examination [34].
Our present study revealed no differences between the reference and post-op groups, and no differences
were observed between the reference and intermediate groups in contrast to texture analysis.

Lucchese et al. used fractal analysis in the case of complexity of the vascular patterns of oral
lichen planus (OLP). They revealed a close relationship between abnormal vascular architecture and
atrophic-erosive OLP [39].

Lampros et al. examined the vascular pattern of histologic sections. They reported that carcinomas
presented higher mean values of vascular fractal dimension and total vascular area compared to
normal mucosa [40]. Rasha et al. examined microscopic slides of mucosa and squamous cell carcinoma
(SCC). Fractal dimension increases as the complexity increases from normal to dysplasia and then to
SCC [41]. Yang et al. confirmed that fractal dimension provided a precise and theoretically appropriate
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approximation of cell nuclear structure properties, especially their shape complexity. Fractal dimensions
of high-grade dysplasia were significantly lower than those of low-grade dysplasia [42]. In most fractal
dimension studies based on microscopic or X-ray image analysis, the authors did not find any similar
studies based on intraoral photos. It is important to remember that the oral cavity is not an easy place
to take photos due to the irregular shapes, reflections, and softness of some structures (tongue, cheeks),
which are sensitive to any tensions. These tensions are able to deform the shape of the examined
lesions, and classical methods of measurement fail, so it is important to find methods to bypass these
limitations. Our results show that texture and fractal dimension analysis may be helpful in bypassing
these problems.

It was found that in the clinical material studied, recurrence of OL after the treatment protocol was
ten times more frequent in the tongue or cheek than in the mouth or gingiva. Some primary features of
the second order in the appearance of the OL (FDA and DifEntr/LngREmph) seem to have a prognostic
significance for the occurrence of a recurrence. However, laser therapy destroys the lesion, and in
the intermediate period, all treated sites become similar. The visual characteristics of the mucous
membrane after the proposed treatment are similar, and it is not possible to predict on the basis of
the proposed photographic image analysis which sites will lead to recurrence. Therefore, the greatest
importance should be attached to the assessment of the primary change.

Some studies reveal that a smartphone’s camera may be useful in diagnosis and telemedicine
processes [43,44]. Maier et al. applied fractal analysis of pigmented moles using a smartphone’s camera.
They had an 8 megapixels matrix, but only 1920 × 1080 resolution was applied during their studies [45].
Breslauer et al. used a cell phone’s camera and an experimental fluorescence microscope for the
imaging of tuberculosis and an automated image analysis. They revealed that only 3.2 megapixel
(2048 × 1536 pixel, 2.7 µm pixel size) was enough to get a proper resolution and quality of images
useful for mathematical analysis [46]. Cameras in telephones nowadays have sensors with a gigantic
number of pixels, e.g., 40 million. On the other hand, the authors are familiar with the issue of
diffractive limit and relatively low tonal depth. Therefore, in texture analysis 8-bit images were not
analysed but reduced to 6-bit. Authors can also postulate that this is the gateway to the widespread
use and creation of a mobile-phone-based application for automatic leukoplakia testing.

5. Conclusions

Er:YAG laser is an effective treatment method in the case of OL.
Leukoplakia treatment by Er:YAG laser is an effective modality as revealed by the oral mucosa

microstructure. Most often in medicine, restitutio ad integrum is not achieved, and in the macrostructure
of the photographic image of the treated sites, changes requiring further clinical supervision can
be observed.

Texture and fractal dimension analysis are promising methods to estimate the effectiveness of oral
leukoplakia treatment, but texture analysis seems to be much more valuable. These two methods may
be the basis of a remote diagnosis system of oral lesions in a future study.
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