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Abstract: Background: Magnesium has been used as degradable fixation material for osteosynthesis,
but it seems that mechanical strength is still a current issue in these fixations. The aim of this study
was to evaluate the axial pull-out force of compression headless screws made of magnesium alloy
during their resorption. Methods: The tests included screws made for osteosynthesis of the mandible
head: 2.2 mm diameter magnesium alloy MgYREZr (42 screws) and 2.5 mm diameter polylactic-co-
glycolic acid (PLGA) (42 pieces, control). The screws were resorbed in Sørensen’s buffer for 2, 4, 8, 12,
and 16 weeks, and force was measured as the screw was pulled out from the polyurethane block.
Results: The force needed to pull the screw out was significantly higher for MgYREZr screws than
for PLGA ones (p < 0.01). Within eight weeks, the pull-out force for MgYREZr significantly decreased
to one third of its initial value (p < 0.01). The dynamics of this decrease were greater than those of the
pull-out force for PLGA screws (p < 0.05). After these eight weeks, the values for metal and polymer
screws equalized. It seems that the described reduction of force requires taking into account when
using magnesium screws. This will provide more stable resorbable metallic osteosynthesis.

Keywords: screw; pull-out force; magnesium; polylactide; polyglycolic acid; fixation material;
mandible; condylar head fracture

1. Introduction

The basic treatment method for dislocated fractures is osteosynthesis with metal alloy
materials [1–6]. Materials, especially titanium alloys, have appropriate physical proper-
ties [7,8], but in terms of biochemical and long-term impacts on the human body, they raise
serious concerns, i.e., inflammation, thermal hypersensitivity, cell apoptosis, and oxidative
and nitrosative stress in treated patients [9–12]. If the alloy comes into contact with the oral
cavity, its relatively rapid surface degradation [13] causes undesirable biological reactions
of surrounding soft and hard tissues, loss of osseointegration weakening the maintenance
of the implant in the bone, chemical reactions, functional stresses, and bacterial attack [14].
For this reason, and because of the mechanical irritation of surrounding tissues during
movement in the joints [15], a planned removal of the entire fixation material 2–3 months
after implantation is postulated [15,16]. The solution to these problems would be to use a
fixing material that would disappear after the period of bone healing. Therefore, interest
has been directed toward biodegradable materials [17,18].

Conventional osteosynthesis may be replaced by bone adhesive in the next decades.
Such attempts have been made for many years, and research on bone adhesive materials
is still ongoing [19]. However, there is currently no material available that combines
all of the important clinical features. The main cause of this condition is difficulties in
the production and adaptation of bone adhesives. This is attributable to the challenging
conditions in which bone adhesives are used. Current adhesives are not able to combine
three requirements: biocompatibility, degradability, and bond strength. Genetic and tissue
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engineering, as well as biotechnology, will increase the effectiveness of producing an
adhesive for bonding mandibular head bone fragments in the future [19,20].

Currently, two other groups of fixing materials are available for resorbable osteosyn-
thesis in mandibular condylar fractures: polymers and metal alloys. Because of the promis-
ing chemical properties [20], a series of polylactide fixing materials [21,22] dedicated for
that purpose (pins, screws, and meshes) have been developed in the last two decades.
Their physical properties require some compromise in bone fragment fixation. These ma-
terials have limited clinical application in load-bearing fractures, and such a fracture is
a fracture of the mandible condyle. It was reported that the largest gap distance in the
fracture site was observed for poly-L-lactide (PLLA), followed by magnesium alloy fixation.
The width of the fracture gap between bones increased with respect to increased mastica-
tory loading in both materials [23]. To counter these challenges, poly(lactic-coglycolic) acid
(PLGA) implants aim to combine favorable resorption time and to reduce local reactions
while maintaining sufficient stability to allow bone healing [24–26]. Satisfactory results
have been presented using PLGA fixation without resorption-related complications [27–29],
and it seems to be a proper material for maxillofacial surgery [30].

In recent years, magnesium alloys have been observed to have better mechanical
properties than polymers used for osteosynthesis and still maintain the advantage of
resorbability [31,32] and have also been used in bone regeneration for their biological pro-
prieties [33]. However, it is known that the mechanical properties of magnesium implants
are lower than those of medical titanium [23]. That study [23] was based on a numerical
model. Therefore, further studies should investigate resorbable metal alloys. It seems
that mechanical strength is still a current issue in magnesium fixation. This problem is
worth addressing because maxillofacial surgeons and orthopedists are currently intuitively
sure of their osteosynthesis strength, but these fixations are mainly made with titanium
alloys [34–38]. The only group of medical specialists who are fully ready to use magnesium
screws are children’s traumatologists, who have their own experience in using PLLA and
PLGA materials [39–41].

When considering metal resorbable bone osteosynthesis, it is worth asking how
stable early healing results can be expected to last (please see the figure presented in the
Discussion section). There may be several reasons for the condition presented in that
figure, but among these reasons is the weakening of the force keeping bone fragments
stationary by the magnesium screws used. Bone fixation keeps the bone fragment in a
reduced position until bone continuity is restored. This period of bonding takes quite a
long time. Full remodeling of the new bone at the fracture site takes up to one year after the
fracture [42]. The first adhesion occurs in six weeks, but the bone at the healing site does
not yet have its original physical characteristics. Therefore, there is a need to maintain the
internal immobilization of bone fragments for several months. This process is to be ensured
by the screws, and their physical characteristics should allow the fragments of the bone to
remain immobile relative to each other. If the material is resorbable, it seems possible that
its ability to hold the bone in place may change over time. The lack of maintenance of bone
fragments in place causes bone deformation and functional disorders in the patient.

The aim of this study was to evaluate the axial pull-out force of compression headless
screws made of magnesium alloy during their resorption.

2. Materials and Methods

The research presented here is a continuation of experiments published in 2020 [43].
The same method and the same measuring station were used for axial pull-out tests after
the resorption time was added.

The tests included 84 screws of 14 mm length made for osteosynthesis of the mandible
head by ChM (www.chm.eu; Juchnowiec Koscielny, Poland): 2.2 mm diameter magnesium
alloy MgYREZr, i.e., WE43 MEO 42 screws and 2.5 mm diameter poly(lactic-coglycolic) acid
in a molar ratio of 85:15 (42 pieces). Polylactic-coglycolic acid (PLGA), which is considered
a good alternative to titanium in osteosynthesis, was chosen as the control [24–30].

www.chm.eu
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Polyurethane foam blocks were used in this study. The high variability in the density
and elastic modulus of the bone affects the results of biomechanical tests [34]. Compared
with human bone, synthetic foam materials have been shown to yield less intra- and
interspecimen variability (www.astm.org/Standards/F1839.htm). These blocks have con-
sistent material properties that are similar to those of human bone. Solid polyurethane
foam is widely used to mimic and is an ideal medium for mimicking human bone, and
the American Society for Testing and Materials [35,36] has established it to be a standard
material for testing orthopedic devices and instruments. In this study, polyurethane foam
with a density of 0.64 g/cm3 (Sawbones Europe AB, Krossverksgatan 3, 216 16 Malmö,
Sweden) was used as a substitute for bone [37,44,45]. The test methods used the followed
standard F543 (www.astm.org/Standards/F543.htm) for medical bone screws. The axial
pull-out strength was used in this study to compare two types of mandible head fixation
screws. The MTS Insight 100 kN testing system with the force detected with the Interface
1010ACK-1.25KNB model was 1.25 kN, and the displacement detected was ±50 mm (MTS
Insight 100, MTS Systems 14000 Technology Drive, Eden Prairie, MN, USA) and was used
to determine the axial pull-out strength of the screws. TestWorks 4 (MTS Systems 14000
Technology Drive, Eden Prairie, MN, USA) was used as software. The test velocity used
was 5 mm/min. at a temperature of 23 ± 2 ◦C. The screws were tested at an insertion depth
of 6 mm into a polyurethane block.

The screws screwed into test blocks were placed in Sørensen’s phosphate buffer
consisting of monobasic kalium phosphate (KH2PO4) and dibasic sodium phosphate
(Na2HPO4) in a volume ratio of 18.2% and 81.8, which stabilized the pH of the buffer at
7.4 ± 0.2. The experimental time intervals were 0, 2, 4, 8, 12, and 16 weeks (Figure 1).
After each of these periods, seven screws with blocks were removed from the buffer and
tested according to the above protocol.
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Figure 1. Appearance of samples used in the resorption experiment: magnesium alloy screws on the
left-hand and poly(lactic-co-glycolic acid) screw on the right-hand side. All screws had a length of
14 mm. Their length did not change during the experiment. The photographs were not scaled; hence
the different lengths in the picture. Asterisks indicate statistical significance in the pull-out force.

Statistical analysis was performed in Statgraphics Centurion 18 (Statgraphics Tech-
nologies Inc., The Plains, VA, USA). A T-test was applied to compare the means (normally
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distributed variables), and a Mann–Whitney W-test was used to compare the medians (non-
normally distributed variables) of the two independent samples for axial pull-out force
comparison at the same time moment between MgYREZr versus PLGA screws. The same
tests were used to assess the decrease in pull-out force with the duration of resorption.

3. Results

As the experiment progressed, the magnesium alloy screws were covered with a white
coating, and pits could be observed on their surface. The poly(lactic-coglycolic) acid screws
material became less transparent and white (Figure 1). The force needed to pull the screw
out was significantly higher for magnesium screws than for polymer screws (p < 0.01).
All data are presented in Table 1 and Figure 2. The evaluation of changes depending on
the time of the experiment revealed that in the case of PLGA screws, the loss of pull-out
force was significant in relation to the initial force only after 8 (p < 0.05), 12 (p < 0.01), and
16 weeks (p < 0.01). For magnesium screws, however, a decrease in pull-out force was
noted in all test periods (p < 0.01).

Table 1. Axial pull-out force change during screw material resorption (mean ± standard deviation).

Time [Weeks] MgYREZr [N] PLGA [N] Note

0 399 ± 7.5 138 ± 26.5 p < 0.01
2 367 ± 28.6 147 ± 4.3 p < 0.01
4 249 ± 34.2 143 ± 11.0 p < 0.01
8 118 ± 71.1 97 ± 17.3 NS
12 201 ± 27.1 72 ± 27.2 p < 0.01
16 102 ± 36.4 49 ± 7.0 p < 0.01

MgYREZr—magnesium alloy screw. PLGA—poly(lactic-co-glycolic acid) screw. NS—no statistical significance.
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Figure 2. Comparison of axial pull-out force of magnesium alloy screw (blue) versus control:
poly(lactic-co-glycolic acid) screw (green). The confidence intervals (brackets), mean values (points),
and the statistical difference between two groups for each time point (asterisks) were determined.

Within eight weeks, the pull-out force for magnesium alloy screws was significantly
reduced to one-third of its initial value. The dynamics of this decrease were greater than
those of the pull-out force for polymer screws. After these eight weeks, the values for
metallic and polymer screws equalized.

4. Discussion

Currently, osteosynthesis is based on screw connections. The role of metallic re-
sorbable screws is to heal the bone, and then the fixing material disappears from the
environment. For this reason, in recent years, this class of resorbable fixation materials has
aroused considerable interest in maxillofacial surgery [40,46]. Other advantages include
anti-inflammatory [47,48] and antibacterial activity [49–51] as well as bone formation in-
duction [52,53]. However, primacy leads to the fact that this fixation material will not have
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to be removed from the body through a second surgical procedure. These advantages have
been recognized in both orthopedics [46] and maxillo-facial surgery [54,55].

Nowadays, the magnesium alloys used have twice as low Young’s modulus
(E = 45,000 MPa) as commonly used titanium grade 5 and 23 (96,000 MPa); approximation
of this previous value to the condition of compact bone may be considered a biological
advantage of magnesium fixation. Despite this lower E value, the modulus of elasticity in
the tension of magnesium alloy is still much higher than that of clinically used resorbable
polymers (3000–10,000 MPa) [23]. These conditions have an obvious influence on the lower
stability of PLGA fixation, and it is worth considering that they may affect the stability of
the screw pulling out of its original position caused by screw absorption (Figure 3).
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Figure 3. Mandibular head fracture fixation. The phenomenon of reduced mandibular ramus height
appeared (asterisk). (A) Fracture site. (B) Osteosynthesis by two magnesium 1.7 mm × 14 mm screws.
(C) Pre-op scan—the mandibular head is dislocated downward which shortens the mandibular ramus.
(D) Fixation by compressive headless screws; visible gas bubbles are the air introduced into the
wound during open reduction; height of mandible head is marked by an asterisk. (E) 6-month post-op
follow-up—fixed bone remodeling, remnants of the produced hydrogen gas (arrow), shortening of
the mandibular ramus as a result of the proximal fragment (mandible head) down-shifting along the
fissure of the fracture (asterisk).

The pull-out force quickly decreases in magnesium screws. The rate of this decrease
was lower for polymer screws, but it should be noted that the initial pull-out force was also
significantly lower for PLGA screws than for magnesium screws (p < 0.01). This effect has
already been observed previously [43]. It is necessary to comment on the observation of
increased pull-out force in the twelfth week of the magnesium alloy experiment. This is
difficult. The mechanism of magnesium resorption in an aqueous environment is not fully
known [56]. Perhaps it is related to the formation of crumbs, scales, and particles of the alloy
on the surface as a result of the progressing absorption of the screw. Such defragmentation
of the MgYREZr surface may increase the friction during the pulling-out of the screw,
which affects the higher pull-out force.
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First, the screw diameter certainly has an impact on the pull-out force [54,57].
The larger the diameter, the higher the force. Second, thread depth, taper shape, and
taper length have an effect on the pull-out force [58]. Increasing the “taper depth” reduces
the pull-out force (probably as a result of just decreasing the diameter of the screw core as
a result of increasing the thread depth). The increasing angle of the “taper” in the screw
reduces the pull-out force. Moreover, increasing the taper length, i.e., the number of threads
on the tapered core, increases the pull-out force of the screw. However, this applies to
screws made of the same material. In this experiment, the implant material had the greatest
influence on the result. This result was due to the significant difference in Young’s module
of MgYREZr and PLGA.

The decomposition of PLGA implants leads to the formation of single particles of
glycolic and lactic acids. Glycolic acid is converted into glyoxylate and then under the
influence of glycine transamidase to glycine. Some glycolic acid monomers are excreted
in urine. After conversion to pyruvic acid, glycine is processed into carbon dioxide and
water. In turn, the lactic acid molecules are more directly converted to pyruvic acid and
further metabolized to carbon dioxide and water. [59]. Resorption of magnesium occurs
when the alloy is exposed to an aqueous environment inside the human body. Magnesium
hydroxide and hydrogen gas are produced as a result of magnesium resorption. Mg(OH)2
reacts with chlorine ions in the body’s internal environment, creating easily soluble MgCl2.
This process leads to the resorption of the implant with the formation of gaseous hydrogen
and ionized hydroxyl groups [46]. It seems that with the accumulation of hydrogen around
the relatively small volumes of magnesium alloy, the screws dedicated to the fixation of
the mandible head [43] would be less of a clinical problem with particles and molecules
persisting in the surrounding soft tissue after degradation of the main mass of the PLGA
screw [18,25].

The time of mandibular bone fracture healing, including mandibular head healing,
is six weeks. After that, remodeling lasting several weeks follows. During this time, it
would be good for the fixing material to keep the bone fragments unchanged despite the
masticatory forces. In numerous comparative studies, it was noted that the fracture gap
after osteosynthesis with resorbable material increases depending on the force with which
it bites. A 200 N masticatory loading force opens the gap to 0.111 mm for magnesium
and 0.299 mm for polymer. For 600 N, it was 0.318 mm for magnesium and 0.848 mm for
polymer [22]. These narrower gaps will be less damaging to the fracture healing process,
but the author recommends some caution even in the application of the magnesium screws.

Resorbable fixing material is used to achieve many goals. Polymeric fixations are
clinically satisfactory for use in children and orthognatic surgery to avoid resurgery for
their removal. However, their limitations should be considered: physical strength, trou-
blesome plate shaping, and taping of the screw canal or transparency for X-rays, making
it impossible to assess their position after surgery. Magnesium alloys have remained of
great interest in recent years because of their strength, biocompatibility, radiopacity, and
resorbability, and they need to be verified for widespread use in humans [31]. As an
example, the pull-out force during magnesium screw resorption exceeding the value of
PLGA can be cited here. In the available literature, there were no results of tests describing
thermal hypersensitivity, cell apoptosis, and oxidative and nitrosative stress in the case
of using screws made of magnesium alloys. The only available information concerns the
evaluation of inflammation. No higher frequency of inflammatory reactions was observed
in patients after magnesium osteosynthesis [59].

To date, there is no ideal material for osteosynthesis. On the one hand, in the case of
polymers, edema persisting for several months around the foreign body is described [25,60].
On the other hand, in the case of magnesium alloys, hydrogen production around the
fixation for a few months is known (Figure 3E). It now seems that the use of resorbable metal
alloys with a higher stiffness than resorbable polymers for mandibular head fixation [61]
is a good option for traumatology patients provided that surgeons know the mechanical



Materials 2021, 14, 237 7 of 10

properties of the material, which influences changes in the forces holding the screws in
place during bone healing together with metal resorption (Table 1).

There are some limitations in this experiment. The study did not examine the influence
of osseointegration on the screw pull-out force change. The osseointegration of the bone
to the screw will probably reduce the purely mechanical effect of that force loss during
resorption. On the one hand, it is worth emphasizing here that some impact is to be
expected in this respect because in the animal model, a low implant resorption rate was
determined in the first 16 weeks [62]. On the other hand, it should also be expected
that the mechanical significance of osseointegration is slightly less in magnesium alloys
than in titanium alloys [63]. In this light, it seems that the mechanical properties of the
material used for screws and the limitation of the patient’s mastication force determine the
maintenance of the position of bone fragments after fixation during healing.

After this study, several clinical remarks need to be made. The use of several screws
for mandibular head osteosynthesis is more reasonable than the use of only a single screw
because magnesium alloy quickly loses its initial mechanical properties with the time of
resorption. This difference is distinct from the use of standard low profile screws made of
titanium alloys [57,64]. This issue is reduced and slightly supported by a modification that
raises the diameter of magnesium screws to 2.2 mm [43], which improves the mechanical
properties of the screw. Nothing stands against the application of a thicker screw with
additional 2–3 narrower screws (1.7 mm). It is still suggested that the screwdriver socket
should be handled gently because of the fragile construction of the cruciform design [43].

The use of implants based on magnesium alloys as resorbable metals for osteosynthesis
shows effective possibilities for their utility in osseosurgery. There are no differences
between magnesium and titanium fixation materials with regard to biocompatibility and
frequency of complications. Therefore, magnesium materials should be considered for
clinical applications in maxillofacial surgery and orthopedics [65], and they are much
more suitable than polylactoglycolic materials [66]. More randomized controlled trials or
prospective studies are needed to demonstrate that different resorbable materials are better
or comparable to titanium screws [67,68]. With regard to the future development of the use
of magnesium alloys, further research is needed to increase biocompatibility [69], to control
the corrosion rate [70], and to reduce gaseous hydrogen production [71]. It should be
possible to compare magnesium-based materials based on the results of various studies by
developing a set of standardized protocols to assess corrosion, biocompatibility, and bone
healing. In addition, wider collaboration with clinicians is encouraged to enable the design
and development of magnesium-based materials at the earliest stages for specific clinical
indications. Continuous efforts and collaboration between scientists and clinicians in
different fields should be made to develop excellent and biocompatible fixation materials.

5. Conclusions

The stable maintenance of bone fragments through resorbable metallic fixations weak-
ens with time after osteosynthesis. After two months, it is as weak as a polymeric screw
made of poly(lactic-coglycolic) acid. Fortunately for stability, the modulus of elasticity of
the magnesium alloy is much higher than that of PLGA.

The decrease in the pull-out force that occurs with the progression of screw resorption
may cause early bone healing to be vulnerable to displacement. For this reason, it seems
clinically reasonable to recommend using more screws and/or combining thinner screws
with thicker (more resistant) screws. This approach will provide more stable resorbable
metallic osteosynthesis.
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